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Ring-closing metathesis (RCM) catalyzed by transition metal
alkylidenes has become a powerful strategy for organic syn-
thesis.1 Despite significant recent developments in this field,
there are very few reports concerning the asymmetric variants
of this reaction.2 Alkylidene complexes of the group VI metals
are well-defined catalysts employed in olefin metathesis reac-
tions.3 We have recently developed a new chelating chiral diol
ligand (1S,2S)- and (1R,2R)-2′, 2′, 2′′, 2′′-tetrakis(trifluorometh-
yl)-1,2-bis(2′-hydroxyethyl)cyclopentane (TBEC-H2, 1) and its
derived chiral molybdenum alkylidene complex (R,R)-Mo-
(CHCMe2Ph)(NAr)(TBEC) (2, Ar ) 2,6-i-Pr2C6H3), in which
one face of the Mo-C double bond is blocked by the ligand
substituents (Figure 1).4 Employing2 as a catalyst, we have
observed the first example of the asymmetric RCM.
To explore the possibility of asymmetric induction by2, we

selected kinetic resolution in RCM. As shown in Scheme 1,
RCM consists of two steps. We presumed the second step (ring-
closing step) to be suitable for asymmetric induction, as this
step involves diastereomeric cyclic transition states that would
likely be of different energy.5 Thus, if k2(a) andk2(b) are
sufficiently different and slower thank1 and k-1, kinetic
resolution could be observed.

For the substrates, we chose dienes that contain a trisubstituted
olefin moiety to slow the cyclization step as well as to control
the site of first metathesis.6 Results are summarized in Table
1.
At 25 °C, racemic (6E)-5-acetoxy-6-methyl-1,6-octadiene (3a)

was cyclized rapidly by addition of 2.0 mol %2 (entry 1). The
reaction was quenched after 20 min, at which time 90% of3a
was consumed. The unreacted3a (10%) was recovered, and
enantiomeric excess (ee) was determined to be 84%.7 The
configuration was determined to be S.8 The coordinating solvent
THF slowed the reaction, but the efficiency of the kinetic
resolution was not improved (entry 2). The progress of the
reaction can be followed by lowering the reaction temperature
(entries 3-6). From these results, the ratiok2(fast)/k2(slow) was
calculated to be 2.02.11 Changing the protecting group to a non-
coordinating triethylsilyl group resulted in acceleration of the
reaction.12 The kinetic resolution of3b could be carried out at
-20 °C, but efficiency and configuration remained constant
(entry 7). We also examined the effect of location of the chiral
center. By changing the position of the triethylsiloxy group
from 5- to 3-, the reaction rate decreased significantly and ee
decreased slightly (entry 8).13,14

Our working models for five-membered ring formation are
shown in Figure 2.15 For these cases, the (S)-isomer has steric
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Figure 1. (R,R)-TBEC-H2 (1) and (R,R)-MoTBEC (2).

Scheme 1
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interactions between the pseudo-axial 5-substituent and the bulky
imido ligand (A). On the other hand, the (R)-isomer does not
have such a steric effect (B). Therefore, the (R)-isomer is
consumed faster than the (S)-isomer, resulting in (S)-enriched
unreacted substrate recovery. In the case of 3-substituted
substrates, the (R)-isomer has steric interaction between the
pseudo-axial 3-substituent and the bulky imido ligand (D), but
the (S)-isomer has more severe steric repulsion between the
pseudo-equatorial 3-substituent and the TBEC ligand (C). Thus,
kinetic resolution can be observed due to the faster consumption
of the (R)-isomer (i.e., recovery of (S)-enriched substrate),
though ring-closing of 3-substituted substrates is slower in
comparison to that of 5-substituted substrates.
Interestingly, kinetic resolution was observed in3d, a

substrate which possesses a disubstituted olefin instead of a

trisubstituted olefin (entry 9).16 In addition, the enantioselec-
tivity was opposite to that of five-membered ring formation.
For six-membered ring formation, the (R)-enriched unreacted
substrates were recovered (entries 9, 10). Figure 3 shows
proposed models for six-membered ring closure. The (S)-isomer
has its 6-substituent in a pseudoequatorial position in its chairlike
transition state (A), whereas the (R)-isomer has the substituent
in a pseudo-axial position, which causes steric destabilization.
Thus, the (S)-isomer was consumed faster and the (R)-enriched
substrate was recovered.
In summary, we have demonstrated the first asymmetric ring-

closing metathesis of dienes by using a newly developed chiral
molybdenum alkylidene as catalyst. The improvement of the
efficiency of the resolution as well as the scope and limitation
of this process are currently under investigation.
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to the faster ring-closing rate compared to those of the substrates containing
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Table 1. (R,R)-MoTBEC-Catalyzed Kinetic Resolution in
Ring-Closing Metathesisa,b

a 2.0 mol % (R,R)-MoTBEC was used.bMass balance (yield of
cyclic product+ recovery of substrate),>90%. cDetermined by1H
NMR. d Determined by synthesis of enantiomerically enriched allyl
alcohol by the Sharpless kinetic resolution9 and derivatization to the
Mosher ester.10 eDetermined by1H NMR of Mosher ester derivatized
after deprotection.f 7.0 mol % (R,R)-MoTBEC was used.

Figure 2. Proposed models for five-membered ring formation.

Figure 3. Partial structures of proposed reaction models for six-
membered ring formation.
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